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Given an arbitrary tensor in an n-dimensional Euclidean space, it is required to find its 'nearest' 
tensor of some preassigned symmetry, i.e. the tensor of this symmetry which has the minimum 
invariant 'distance' from the given tensor. General theorems are given concerning the construction 
and properties of these nearest tensors. The theorems are applied, in the case of elastic tensors, for 
the construction of the nearest isotropic and cubic tehsors to a given anisotropic elastic tensor, and 
the nearest hexagonal polar tensor to a cubic elastic tensor. 

1. Introduction 

An invest igat ion of the elastic properties of an an- 
isotropic body can sometimes be aided by  a knowledge 
of the  corresponding properties of an  isotropic elastic 
body having the same shape and  proximal  stress- 
s t ra in  relations. For example,  the frequency spectrum 
of the normal  vibrat ions  of an anisotropie body 
which is near ly  isotropic m a y  be determined by  the 
method of per turbat ions,  s tar t ing from the  known 
spect rum and modes of v ibra t ion  of a proximal  
isotropic material .  For such a calculation, i t  is desir- 
able to begin wi th  the isotropic mater ia l  which, in 
some sense, is 'nearest '  to the given anisotropic 
material .  A na tura l  defini t ion and  a simple method  
for constructing the isotropic elastic tensor nearest  
to a given elastic tensor is given in  this  paper. 

The problem of construct ing the  isotropie elastic 
tensor nearest  to a given elastic tensor of lower 
s y m m e t r y  can be generalized in  a n u m b e r  of direc- 
tions. F i rs t  of all, the  same methods we have devised 
for solving this  problem can be used to determine  
the elastic tensor of any preassigned s y m m e t r y  which 
is nearest  to a given elastic tensor. Secondly, the 
methods  and  general  theorems we have establ ished 
are not  restr icted to tensors of the par t icu lar  r ank  
and s y m m e t r y  of elastic tensors. Moreover, the general  
invar iance  theorems, which, in view of the in tended 
applications,  have been proved for f ini te  dimensional  
spaces only, can easily be extended to inf ini te  dimen- 
sional spaces, and  hence m a y  f ind appl icat ion in  
analysis.  

General  theorems concerning tensors of any  rank  
in an n-dimensional  Eucl idean  space are given in  
Section 2. Section 3 contains the construction of the 
nearest  isotropic tensor to a given anisotropic elastic 
tensor, and  Section 4 a s imilar  construction of the 
nearest  cubic tensor. F ina l ly ,  in  Section 5, we discuss 
how the present  theorems can be appl ied to other 
s y m m e t r y  groups of crystals and give the construction 
of the nearest  hexagonal  polar  tensor to a cubic 
tensor. 

2. T h e  general theory 

We shall  assume the  reader  is fami l ia r  wi th  the 
defini t ion and  algebra of tensors wi th  f ini te  dimen- 
sional carrier spaces. :For completeness, and  to intro- 
duce our terminology and  notat ions,  we preface this  
section wi th  a brief l is t ing of the re levant  definitions. 

Let  E n denote an  n-dimensional  Eucl idean  space 
wi th  real posit ive definite t imer product  (a, b);  
a, b e E n. A real l inear  t ransformat ion  O of E n -+ E n 
tha t  preserves all  inner  products  is an  orthogonal 
transformation. Thus, O is orthogonal if and only if 

(Oa, Ob)= (a, b) (2.1) 

for every pai r  of vectors a and b. The adjoint A* of 
any  l inear  t ransformat ion  A of En is defined by the 
condit ion 

(A'a,  b ) =  (a, A b ) .  (2.2) 

Wi th  respect to an  or thonormal  sys tem of basis 
vectors in En, an  orthogonal t ransformat ion  is repre- 
sented by  an orthogonal matrix O~j and 

OijOkf = ~ (2"3) 

where ~z are the  components of the  uni t  ma t r i x  
and we use the summat ion  convention for repeated 
indices. In  ma t r i x  notat ion,  (2.3) reads O . O Z = I ,  
where O F denotes the transpose of the ma t r i x  O, 
and I denotes the uni t  matr ix .  Thus, the  ma t r i x  of 
an  orthogonal t ransformat ion  wi th  respect to an 
orthonormal basis satisfies the condit ion O Z = O  -1. 
More generally,  however, from (2-1) and  the defini t ion 
of the adjoint  we have, with respect to any  basis,  
O*= 0 -1, a proper ty  we shall  need in the sequel. 

The components of the metric tensor with  respect 
to a basis e~ of E n are defined by  

g~f - (ei, el) • (2.4) 

As is cus tomary in  geometry and physics, we shal l  
not  dis t inguish between covariant,  contravariant ,  and 
mixed tensors having  the same rank  and  carrier 
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space En. The covariant ,  cont ravar ian t ,  and mixed 
components  of a tensor T are related to one another  
by  the  famil iar  process of raising and lowering the 
indices of thei r  components.  For example, if T is a 
given tensor  with con t ravar ian t  components  T~ rela- 
t ive to a basis ei, t hen  T=TiJe~ ® ej= T~ei ® e J= 
Tije ~ ® eJ, where T ~ = g ~ T  i~, T~j=g~gj~T ~Z and e~ 
denotes the  basis of the  conjugate  space E .  of E~ 
which is reciprocal to the basis e ~ of E n, i.e., ei (e j )= (~. 

Let  E n~ denote the  n~-dimensional space of tensors 
of r ank  k wi th  carrier space E n, and let  G denote 
a group of or thogonal  t ransformat ions  of E~. Each  
l inear t rans format ion  G e G of E n induces a corre- 
sponding l inear t ransformat ion  G : E  ~* -+ E ~,  given 
by the usual tensor law. An invariant tensor of the 
group G is any  tensor T such t ha t  G . T = T  for 
every G e G. Since every G is linear, if T and U are 
invar i an t  tensors, then  so also is ~ t T + u U  , where 
~t and U are a rb i t r a ry  scalars. Thus, the  set of all 
i nva r i an t  tensors of a group G having given rank  
and carrier space E = form a subspace of E n~ for an 
appropr ia te  value of k. Now each E ~ is f ini te-dimen- 
sional with a positive definite inner  product  defined 
by  

(T, U) = TiV~ . . . i kV iv~ . . . i k  

- g ~ g ~ . . ,  g ~ k l k T i i i ~ . . ,  ik U ] l ] ~ . . . .  ik . (2 "5 )  

I t  is always possible to construct  an  or thonormal  
basis of tensors in E ~ such t h a t  the f i r s t /V members 
span the subspace of inva r i an t  tensors of G in E ~ 
while the remaining n ~ - / V  members span the com- 
plement.  Let  Ap, p - -  1, 2, . . . ,  /Y and Bq, q - -  
1, 2, . . . ,  n~- /V " denote the elements of such a basis. 
An a rb i t r a ry  tensor T e E ~ can then  be expressed 
in the form 

37 nk--~V 

T = Z (A~, T)Ap + ~ (Ba, T)Bq -- GT-t-T* (2.6) 
p ~ l  q=l 

where aT  denotes the sum of the  first  N terms in 
(2.6) and  T* denotes the  sum of the last  n ~ - / Y  terms. 
Now ~T is an inva r i an t  tensor  of the group G as 
is every element  Ap. Also, ~T is the normal  project ion 
of T into the  subspace of invar i an t  tensors of G. 
We call T* the  residue of T relative to the group G 
and we call ~T the tensor of symmetry G nearest to 
the tensor T. I t  is nearest  in the sense t h a t  i t  is the 
element of the subspace o{ ~nvarlant tensors o~ G 
which minimizes the 'distance'  D~ = (T - aT, T -  GT). 

In  general, suppose one is given a par t icular  tensor 
C of r ank  k. One easily sees t h a t  the  set of all or- 

thogonal  t ransformat ions  O such t h a t  C = C ,  where 

C = O . C ,  form a group, cG say. We call cG the 
invar iance group, or symmetry group, of the tensor C. 
The orthogonal  group, for example, is the symmet ry  
group of the metric  tensor g. 

Consider next  an a rb i t ra ry  group of or thogonal  
t ransformations,  G, finite or infinite,  for which the 

process of group in tegra t ion  can be defined. :~ Let  the 

symbol ~ denote  averaging over the  group, i.e. s u m -  
J G 

marion and/or  in tegra t ion  divided by the 'volume'  
of the group. Let  C be an a rb i t r a ry  tensor of rank  k 
and consider the average of the t ransform of C over 
the  group 

= I o . c .  (2.7) 
J OeG 

The average tensor C is always an inva r i an t  tensor  
of the group G. Hence, averaging over the group 
defines a cer ta in  l inear  mapping of the  whole space E nk 
into the subspace of inva r i an t  tensors of G. Normal  
project ion described above provides a similar mapping.  
Theorem (2.1), which follows, s tates t h a t  these 
mappings are one and the same mapping.  

Theorem (2.1): The tensor GC of symmetry G nearest 
to a given tensor C is equal to the average of the trans- 
form of C over the group G of orthogonal transforma- 
tions. 

Proof:  I t  suffices to show t h a t  the  components  

(Ap, C) and (Ap, C) are equal respectively,  where A~ 
is an a rb i t r a ry  or thonormal  basis for the  subspace 
of invar i an t  tensors of G in E nk. We have 

(h~, 
J G ,i G 

But,  since every O e G is orthogonal ,  O r =  O-1, and 
since G is a group, i t  contains 0 -1 if i t  contains O. 
But  Av is, by hypothesis ,  an  invar i an t  tensor of G 
so t h a t  O - I ( A p ) = O t ( A p ) = A v .  Thus (2-8) becomes 

d) = I (Av, C ) =  (A~, C) (2-9) (A~, 
J G 

which proves the theorem. § 

Let  C be a tensor of even rank  2r. We say t h a t  
C is positive definite if 

(e, Ce) = C~li 2 . . .  iT~13"~. • .iT e il/2 • • • ireilJ2. • • j~ > 0 (2"10) 

for every tensor e @ 0. 

Theorem (2.2)" The average of the transform of a positive 
definite tensor over any group of transformations is 
positive definite. 

~: For finite groups, integration over the group reduces to 
summation and is always possible. For infinite groups, the 
theory is given by Weyl (1946). 

§ It may be pointed out that nothing in the proof depends 
in an essential way upon the finite dimension of E n so that 
the result established here for finite dimensional spaces E n 
can also be established for E n replaced by a ttflbert space H. 
Also, the real metric assumed here may be replaced by a 
positive definite Hermitian form and the orthogonal group 
replaced by the unitary group. However, our applications do 
not require these possible generalizations. 
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The proof is trivial. We have 

(e, O(C)e)=(O+(e), CO+(e)). 
Hence 

^ f (e, C e ) =  (O+(e), CO+(e)) > 0 
G 

(2.11) 

for every e=~0 provided C is positive definite. 
As a corollary of theorems (2.1) and (2-2) we have 

Corollary (2.1)" The nearest tensor of symmetry  G to 
a positive definite tensor is always positive definite. 

3. T h e  i s o t r o p i c  e l a s t i c  t e n s o r  n e a r e s t  to  an  
e l a s t i c  t e n s o r  of  a r b i t r a r y  s y m m e t r y  

In classical linear elasticity theory the elastic prop- 
erties of a homogeneous material are completely 
determined by the stress-strain relations which we 
write in the form 

t iJ = CiJkte~t (3" 1) 

where ti~ = t~ are the components of the stress tensor 
and e~j = ej~ are the components of the tensor measure 
of infinitesimal strain. Thus, within the linear theory, 
the material  properties are fixed in terms of the 
elastic tensor C. Every  elastic tensor satisfies the 
relations 

C ij~Z = C~ ~kZ = CiJ Z~ = C~m (3"2) 

and is positive definite in the sense of (2.10). We 
adopt the view tha t  any positive definite tensor C 
of rank four satisfying the relations (3-2) defines a 
possible elastic material. 

A tensor invariant  of the full orthogonal group is 
called an isotropic tensor. To construct the nearest 
isotropic tensor to a given elastic tensor C, we can, 
by theorem (2.1), follow either of two procedures" 
(1) average C over the orthogonal group, or (2) con- 
struct an orthonormal basis of isotropic tensors of 
rank four which span the subspace of isotropic 
tensors having the symmetry  (3.2). By theorem (2.2) 
and corollary (2.1) we are assured tha t  the isotropic 
tensor nearest to any elastic tensor C will be positive 
definite and, therefore, an elastic tensor also. The 
construction of the nearest isotropic tensor according 
to the second procedure is the easiest. 

Two orthonormal isotropic tensors satisfying the 
symmetry  relations (3.2) can be constructed by taking 
suitable linear combinations of the two isotropic 
tensors 

E(1)~j~ =g~jg~z , 

E(2)~j~ = g~gkt + gugj~ , (3"3) 

and it is known tha t  every isotropic tensor of rank 
four satisfying (3-2) is a linear combination of E(1) 
and E(2). One set of orthonormal isotropic tensors is 
given by 

A1 = ½El, 

1 
Az = ~ (3Eg.-2E1). (3.4) 

In the Voigt notation for a 6 × 6 elastic tensor, 
the tensors Aj, J - - l ,  2 have components given ex- 
plicitly by 

Ai = ½ 

1 
Ag. = 

1 1 1 0 0 
1 1 1 0 0 
1 1 1 0 0 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

4 - 2  - 2  0 0 
- 2  4 - 2  0 0 
- 2  - 2  4 0 0 

0 0 0 3 0 
0 0 0 0 3 
0 0 0 0 0 

Any other orthonormal set of 
is expressible in terms of the 
formula 

B j  = b~Ai 

where summation from 1 to 2 
indices is implied, and b~ is a 2 
having the form 

cos 0 
[IbSII =  sin 0 

with 0 a parameter.  

0 
0 
0 
0 ' 
0 
0 

b 

° 1 
0 
0 
0 " 
0 
3 _  (3-5) 

isotropic tensors, Bj, 
Aj  by means of the 

, (3.6) 

over repeated capital 
× 2 orthogona] matr ix 

s i n a i  (3.7) 
C O S  

An arbi t rary  elastic tensor C may now be expressed 
as a sum of three components: 

C = (C, A1)A1 + (C, A2)A2 + C* (3-8) 

where the isotropic residue C* is the difference 
between C and its nearest isotropic tensor which is 
the sum of the first two terms on the r ight-hand side 
of (3.8). We may note tha t  the isotropic tensors 
Aj are not elastic tensors since each is only positive 
semi-definite. Moreover, the isotropic residue C* is 
always indefinite or semi-definite. The basis A j  is 
distinguished by the property tha t  each element of 
the basis is positive semi-definite. From the formulae 
(3-6) and (3-7) it  can be easily seen tha t  the elements 
S j  Of any other orthonormal basis for isotropic 
tensors of this symmetry  consist in one definite 
(positive or negative definite) element and one in- 
definite element. 

Given an arbi t rary  elastic matr ix in the Voigt 
notation, the nearest isotropic elastic tensor is par- 
t icularly easy to compute using the formulae (3.5) 
and (3.8). 

For convenience in computing the inner product 
(C, D) when C and D are given in the Voigt notation. 
we give the following formula: 

(C, D)- - t race  ( Q . C . Q . D )  (3"9) 
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where, on the r igh t -hand  side, C and  D are the 6 x 6 
Voigt matrices,  a dot denotes ma t r ix  mult ipl icat ion,  
and  

1 
0 
0 

Q =  0 
0 
0 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 2 0 
0 0 0 2 
0 0 0 0 

0 
0 
0 
0 
0 
2 

(3.10) 

4. T h e  n e a r e s t  cub ic  t e n s o r  

A cubic elastic tensor is an  elastic tensor whose sym- 
me t ry  group is generated by  the permuta t ions  of its 
s y m m e t r y  axes (el, e2, ea) and the reflections e, --> - e,. 
If  the coordinate axes are chosen so as to coincide 
wi th  the s y m m e t r y  axes of the material ,  the  trans- 
formations which leave C ~  invar ian t  are the trans- 
formations O which permute  and  reflect the axes of 
the coordinate sys tem in any  fashion. 

An a rb i t r a ry  cubic elastic tensor is expressible in 
the form 

C -- ~ A t  + a~A2 + c~As,  (4" 1) 

where Aj, J----1, 2, 3 is an  or thonormal  set composed 
of the isotropic tensors A1 and  A2 given in  (3.5) and 
a cubic tensor A3. If  the axes of the coordinate system 
coincide wi th  the  axes of the given cubic tensor, 
then  As has components,  in  the 

- - 2  
1 

1 1 
As = ~ /~  0 

0 
0 

An a rb i t ra ry  elastic 
the form 

3 

Voigt notat ion,  

1 1 0 0 
--2 1 0 0 

1 - -2  0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 

tensor C 

0 
0 
0 
0 (4.2) 

0 
1 

can be wr i t ten  in  

C = Z (Aj, C)Aj  + C* (4.3) 
J = l  

= cC+ C*, 

where C* is the  cubic residue and ~C is the cubic 
tensor having  the  s y m m e t r y  axes of A3 which is 
nearest  to the  given tensor C. By  corollary (2-1), 
~C is positive definite. 

Now the s y m m e t r y  axes of Aa, which determine 
the s y m m e t r y  axes of cC, were chosen in  a perfect ly 
a rb i t ra ry  way. The resolution (4-3) minimizes the 
length  (C*, C*) of the residue for this  par t icular  
choice of the s y m m e t r y  axes of the cubic part .  How- 
ever, in  general, there exists another  cubic tensor 
with s y m m e t r y  axes different  from As such that ,  
in  a s imilar  resolution of the same tensor C, the 
residue has smaller  length. To determine the direction 
of the s y m m e t r y  axes of the cubic tensor for which 
the residue of a given tensor C has the smallest  length 
is a more difficult  problem. The problem is only 
par t ia l ly  resolved by  the following considerations. 

Let  T . A s  denote an  orthogonal t rans format ion  of 
the par t icular  cubic tensor (4.2). The tensors A1, A2, 
and  T . A s  form an or thonormal  basis for cubic elastic 
tensors having  the s y m m e t r y  axes of T .As .  W i t h  
respect to this  new basis, an a rb i t r a ry  elastic tensor 
C is decomposed as follows" 

C =  (C, A1)A1 + (C, A2)A2 + (C, T . A s ) T . A 3 +  C*(T) 

(4-4) 

where the residue now depends on T as indicated.  
The cubic elastic tensor nearest  to C is now given by  
the f irst  three terms in  (4.4) for t ha t  value of T which 
minimizes  I C*(T)I. 

Suppose tha t  the axes of As coincide wi th  the axes 
of s y m m e t r y  of the cubic elastic tensor nearest  to C. 
In  this  case, the quan t i ty  

G - (C, T .As)  (4-5) 

will  have a s ta t ionary  value at  T - - I ,  for a rb i t r a ry  
inf in i tes imal  rotations. Let  C~jkz be the components of 
C in the coordinate sys tem whose axes coincide wi th  
the s y m m e t r y  axes of its nearest  cubic elastic tensor, 
and  let  A ~  denote the  corresponding components  
of A3 given in the Voigt notat ion by  (4-2). An infinite- 
s imal  rotat ion T has Cartesian components given by  

Tij = (5~j +e i j ,  e~j = -- 8ji • (4"6) 

The first  var ia t ion  of the funct ion G is then  given by  

= 2 etpCi~kz (A p ~  + Aj~:p) (4-7) 

which mus t  vanish  for a rb i t ra ry  s~j. Inser t ing the 
values of the Aij~z as given by  (4.2), we deduce" 

Theorem (4.1): Given the components of an elastic tensor 
C in a particular coordinate system, a necessary con- 
dition that the axes of the coordinate system coincide 
with the axes of the cubic elastic tensor nearest to C is 
that the Voigt components of C satisfy the relations 

C16 = C26, C24 = C84, C85 = C15. (4-8) 

We should caution tha t  the relations (4.8) are only 
necessary, not  sufficient, and we have not  completely 
solved the problem of determining the cubic tensor 
nearest  to a given elastic tensor except in  the  case 
when the axes of symmet ry  of the cubic are prescribed. 
However, the result  established in  theorem (4.1) 
par t ia l ly  resolves the problem of finding, for example,  
the cubic tensor nearest  to a te t ragonal  polar  elastic 
tensor in  the following sense. If  a te tragonal  polar  
elastic tensor is referred to i ts  na tu ra l  coordinate 
system, only the first  relat ion in  (4-8) can fai l  to be 
satisfied. The last  two relations are preserved under  
any  rotat ion about  the th i rd  axis and a sui table  
rotat ion about  the th i rd  axis will yield a C16 and C26 
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satisfying (4.8)1. The residue of C modulo its nearest 
cubic with symmetry axes which coincide with the 
new coordinate axes, will then be a local minimum. 

5. General izat ions to o t h e r  s y m m e t r y  g r o u p s  
of c r y s t a l s  

I t  is well known that  there are thirty-two different 
classes of crystals, which are among the most im- 
portant anisotropic materials (Love, 1944). The sym- 
metries of the various crystalline classes are described 
by the groups of covering operations which correspond 
to them. If we confine our attention only to the 
elastic tensors associated with the various classes, 
the thirty-two classes coalesce into nine groups. 
The elastic tensors of these nine groups are invariant 
under corresponding groups of orthogonal transforma- 
tions. Table 1 contains an identification of these 
groups, the corresponding number of independent 
elastic constants and the name of a representative 
crystalline class, after Miers (Love, 1944). 

Table 1. Classification of crystals according to number 
of elastic constants 

Name of representative Number  of 
Group class (after Miers) elastic constants 

1 Asymmetr ic  21 
2 Equatorial  13 
3 Digonal holoaxial 9 
4 Trigonal polar 7 
5 Trigonal holoaxial 6 
6 Hexagonal polar 5 
7 Tetragonal polar 7 
8 Tetragonal holoaxial 6 
9 Tesseral polar (cubic) 3 

By considering the invariant transformations of the 
nine groups, we see that  they are subgroups of one 
another and of the isotropic group, as shown in Fig. 1, 
where the arrows show transitions from a group to 
a subgroup. The numbers in Fig. 1 correspond to the 
group number of Table 1. 

The discussion in the preceding sections is ap- 
plicable for finding the elastic tensor of some desired 
symmetry nearest to a given elastic tensor. If the 
symmetry group of the desired tensor is a subgroup 
of the symmetry group of the given tensor, then the 
nearest elastic tensor to the given tensor is the tensor 
itself. For example, the nearest asymmetric (triclinic) 
tensor to any elastic tensor is the tensor itself. How- 
ever, a residue is obtained if, in Fig. 1, the group of 
the desired symmetry cannot be reached from the 
group of the given tensor by a sequence of arrows. 
As an example we give below the construction of a 
hexagonal polar tensor nearest to a tesseral polar 
(cubic) tensor. I t  may be mentioned that  this con- 
struction may have certain practical applications in 
vibration problems in which factorization of the 

Isotropic group 

6 

9 5 

7 

1 

Fig. 1. Relation of the nine groups of Table 1 to each other 
and to the isotropic group. 

frequency equation is possible in the case of hexagonal 
symmetry, but not in the case of cubic symmetry 
(Hearmon, 1961). 

An orthonormal set of tensors for the hexagonal 
polar group is a set Aj, J----1 to 5, where A1 and A2 
are the isotropic tensors given in (3-5) and 

A3 -- 1 

1 
A 4  ~ - -  

1 
A5 = 

I 
--2 - 2  1 0 0 0 

2 - 2  1 0 0 0 
1 1 4 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

_ 0 0 0 0 0 0 

I 
--8 4 4 0 0 0 

4 - 8  4 0 0 0 
4 4 --8 0 0 0 
0 0 0 9 0 0 
0 0 0 0 9 0 

_ 0 0 0 0 0 - - 6  

I 1 i - 5  4 0 0 0 - 5  1 4 0 0 0 
4 4 - 8  0 0 0 

0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 3 

(5.1) 

The nearest hexagonal polar tensor to a given cubic 
elastic tensor, constructed following the method of 
Section 2, is given by 

A C 16 --  60 
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t 

Cij I 
¼(3cii +ci2"-b 2c4a) ¼(cii + 3ci2-- 2c4a) ci2 0 
~(cii -{- 3ci9. -- 2c44) ~(3Cll -~- c19. -}- 2c44) cir. 0 

C12 Ci2 Cii 0 

i 0 0 c44 
0 0 0 
0 0 0 

0 0 - 
0 0 
0 0 
0 0 

c44 0 
0 ½(c~1-c12)_ 

(5.2) 

where cn, o2, and  c44 are the elastic constants  of the  
cubic tensor. 
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Stereochemistry of Arsenic. IX. Diiodomethylarsine* 

:BY NORMAN CiMERMAN AND JA_~ES TROTTER 

Department of Chemistry, University of British Columbia, Vancouver 8, B.C., Canada 

(Received 26 November 1962) 

Crystals of diiodomethylarsine, CHaAsI2, are monoclinic with eight molecules in a unit cell of 
dimensions a = 14.45, b =4.60, c = 19.97 A, fl = 114°20 ', space group C2/c. The structure has been 
determined from partial three-dimensional data in normal and generalized projections along b, 
and values of the bond distances, valency angles, and intermolecular separations have been obtained. 

As par t  of a series of invest igat ions of compounds 
containing arsenic, the crystal  and molecular  s tructure 
of di iodomethylars ine  has been determined;  i t  is one 
of the few simple arsenic derivatives which are solid 
at  room tempera ture .  

Experimental 
Crystals of di iodomethylarsine,  which are yellow- 
orange, are volat i le  and  mel t  at  about  room temper- 
ature. For recording the  X-ray  data,  crystals  were 
sealed in  capillaries and cooled by  a s t ream of ni trogen 
which was f irst  passed through a coil immersed in 
an  ice-bath. The unit-cell  dimensions and space group 
were de termined from various rotation, oscillation, 
Weissenberg (Cu Ka)  and  precession (Me Ka) films. 

Crystal data (at 5-i0 °C; ;t(Cu K~) = 1"5418 A, 
~(Mo Ka) = 0.7107 A). 

Diiodomethylarsine,  CH3AsI2; M, 343.85; m.p. 
26 °C. 

~¢[onoclinic, 
a =  14.45, b--4.60, c =  19.97 .~, f l=  114 ° 20'. 

U--  1209.5 A 3. 
Dz (with Z = 8 ) = 3 . 8  g.cm-3. 
Absorpt ion coefficient, /z (Cu Ka)  = 939 cm -1. 
F(000) = 1184. 

* Part VIII: Camerman & Trotter (1963). 

Absent  reflexions: hkl when (h +/c) is odd, hO1 when 
l is odd. 

Space group is Cc or C2/c. Analysis  has proceeded 
sat isfactori ly in  C2/c. 

No sui table f lotat ion medium was avai lable  for 
measuring the densi ty ;  the densi ty  of the l iquid,  
measured at room tempera ture  by  means  of a densi ty  
bottle, was 3.1 g.cm -3, and, since i t  seemed l ikely  
tha t  the solid at  s l ight ly  reduced temperatures  would 
have a higher density,  Z =  8 was assumed. This was 
confirmed by  the structure analysis.  

In tens i ty  da ta  for the hO1 and hll reflexions were 
recorded on Weissenberg f i lms and es t imated visual ly,  
and the structure ampl i tudes  were derived as usual,  
the  absolute scale being established later  by  correla- 
t ion with the calculated structure factors, The crystal 
used was a needle, elongated along b, with a rectangular  
cross-section 0 '4×0 .13  mm,  the (001) face being 
developed. The fi lms were textbook examples  (Buer- 
ger, 1960) of severe absorption effects, and corrections 
were appl ied (Howells, 1950). These absorpt ion cor- 
rection factors applied to the intensit ies var ied from 
1 to about  150, and since they  are approximate ,  the  
accuracy of the measured structure ampl i tudes  is 
p robably  ra ther  l imited.  140 independent  hO1 re- 
flexions (77% of the possible) and 213 h l l re f l ex ions  
(62 %) were observed. 


