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The Elastic Tensor of Given Symmetry Nearest to an Anisotropic Elastic Tensor

By D. C. Gazis, I. TaApsBAKHSH AND R. A. TouPIN
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New York, U.S.A.

(Received 14 November 1962)

Given an arbitrary tensor in an n-dimensional Euclidean space, it is required to find its ‘nearest’
tensor of some preassigned symmetry, ¢.e. the tensor of this symmetry which has the minimum
invariant ‘distance’ from the given tensor. General theorems are given concerning the construction
and properties of these nearest tensors. The theorems are applied, in the case of elastic tensors, for
the construction of the nearest isotropic and cubic tensors to a given anisotropic elastic tensor, and
the nearest hexagonal polar tensor to a cubic elastic tensor.

1. Introduction

An investigation of the elastic properties of an an-
isotropic body can sometimes be aided by a knowledge
of the corresponding properties of an isotropic elastic
body having the same shape and proximal stress-
strain relations. For example, the frequency spectrum
of the normal vibrations of an anisotropic body
which is nearly isotropic may be determined by the
method of perturbations, starting from the known
spectrum and modes of vibration of a proximal
isotropic material. For such a calculation, it is desir-
able to begin with the isotropic material which, in
some sense, is ‘nearest’ to the given anisotropic
material. A natural definition and a simple method
for constructing the isotropic elastic tensor nearest
to a given elastic tensor is given in this paper.

The problem of constructing the isotropic elastic
tensor nearest to a given elastic tensor of lower
symmetry can be generalized in a number of direc-
tions. First of all, the same methods we have devised
for solving this problem can be used to determine
the elastic tensor of any preassigned symmetry which
is nearest to a given elastic tensor. Secondly, the
methods and general theorems we have established
are not restricted to tensors of the particular rank
and symmetry of elastic tensors. Moreover, the general
invariance theorems, which, in view of the intended
applications, have been proved for finite dimensional
spaces only, can easily be extended to infinite dimen-
sional spaces, and hence may find application in
analysis.

General theorems concerning tensors of any rank
in an n-dimensional Euclidean space are given in
Section 2. Section 3 contains the construction of the
nearest isotropic tensor to a given anisotropic elastic
tensor, and Section 4 a similar construction of the
nearest cubic tensor. Finally, in Section 5, we discuss
how the present theorems can be applied to other
symmetry groups of crystals and give the construction
of the nearest hexagonal polar tensor to a cubic
tensor.

2. The general theory

We shall assume the reader is familiar with the
definition and algebra of tensors with finite dimen-
sional carrier spaces. For completeness, and to intro-
duce our terminology and notations, we preface this
section with a brief listing of the relevant definitions.

Let E» denote an n-dimensional Euclidean space
with real positive definite inner product (a, b);
a,b € E». A real linear transformation O of E» — E»
that preserves all inner products is an orthogonal
transformation. Thus, O is orthogonal if and only if

(Oa, Ob)=(a, b) (2°1)

for every pair of vectors a and b. The adjoint At of
any linear transformation A of E7 is defined by the
condition

(Ata, b)=(a, Ab) . (22)

With respect to an orthonormal system of basis
vectors in E», an orthogonal transformation is repre-
sented by an orthogonal matriz O and

040rs = Ouk (2-3)
where Juz are the components of the unit matrix
and we use the summation convention for repeated
indices. In matrix notation, (2:3) reads 0.07=I,
where O7 denotes the transpose of the matrix O,
and I denotes the unit matrix. Thus, the matrix of
an orthogonal transformation with respect to an
orthonormal basis satisfies the condition O7=0-1.
More generally, however, from (2-1) and the definition
of the adjoint we have, with respect to any basis,
Ot=0"1, a property we shall need in the sequel.
The components of the metric tensor with respect
to a basis e; of E» are defined by
9is = (e, €7) . (24)
As is customary in geometry and physics, we shall
not distinguish between covariant, contravariant, and
mixed tensors having the same rank and carrier
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space K= The covariant, contravariant, and mixed
components of a tensor T are related to one another
by the familiar process of raising and lowering the
indices of their components. For example, if T is a
given tensor with contravariant components 7% rela-
tive to a basis e;, then T=Tie; Q e;="Tle; R ei=
T:;6t @ e/, where T;:gjkT“‘, Tiij=guguT* and et
denotes the basis of the conjugate space E, of E»
which is reciprocal to the basis et of E=, i.e., ei(e;) = &

Let En* denote the n*-dimensional space of tensors
of rank k with carrier space E», and let G denote
a group of orthogonal transformations of E». Each
linear transformation G € G of E» induces a corre-
sponding linear transformation G:E»* — Er*, given
by the usual tensor law. An invariant tensor of the
group G is any tensor T such that G.T=T for
every G € G. Since every G is linear, if T and U are
invariant tensors, then so also is AT+ #U, where
A and 7 are arbitrary scalars. Thus, the set of all
invariant tensors of a group G having given rank
and carrier space E» form a subspace of E»* for an
appropriate value of k. Now each E"* is finite-dimen-
sional with a positive definite inner product defined
by

(T, U)=Ta% %0, 5. . .4

= guniasy. - Gun T2 EOVE Tk (2:5)
It is always possible to construet an orthonormal
basis of tensors in E#* such that the first N members
span the subspace of invariant tensors of G in Er*
while the remaining »*— N members span the com-
plement. Let Ay p=1,2, ..., N and B, g =
1,2, ..., n*— N denote the elements of such a basis.
An arbitrary tensor T e E»* can then be expressed
in the form

N nk—xy
T =2 (Ap, T)Ap + 3 (B, T)By = ¢T+T* (2:6)
p=1

g=1

where ¢T denotes the sum of the first N terms in
(2+6) and T* denotes the sum of the last n* — NV terms.
Now ¢T is an invariant tensor of the group G as
is every element A,. Also, ¢T is the normal projection
of T into the subspace of invariant tensors of G.
We call T* the residue of T relative to the group G
and we call ¢T the fensor of symmetry G nearest to
the tensor T. It is nearest in the sense that it is the
element of the subspace of invariant tensors of @
which minimizes the ‘distance’ D2=(T —¢T, T—¢T).

In general, suppose one is given a particular tensor
C of rank k. One easily sees that the set of all or-
thogonal transformations O such that C=C, where
C=0.C, form a group, ¢G say. We call ;G the
invariance group, or symmetry group, of the tensor C.
The orthogonal group, for example, is the symmetry
group of the metric tensor g.

Consider next an arbitrary group of orthogonal
transformations, G, finite or infinite, for which the
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process of group integration can be defined.} Let the
symbol S denote averaging over the group, ¢.e. sum-
G

mation andfor integration divided by the ‘volume’
of the group. Let C be an arbitrary tensor of rank &
and consider the average of the transform of C over
the group

A

C= o.C. (27

SOEG

The average tensor Cis always an invariant tensor
of the group . Hence, averaging over the group
defines a certain linear mapping of the whole space En*
into the subspace of invariant tensors of . Normal
projection described above provides a similar mapping.
Theorem (2-1), which follows, states that these
mappings are one and the same mapping.

Theorem (2:1): The tensor ¢C of symmetry G nearest
to a given tensor C s equal to the average of the trans-
form of C over the group G of orthogonal transforma-
tions.

Proof: It suffices to show that the components

(Ap, é) and (Ap, C) are equal respectively, where A,
is an arbitrary orthonormal basis for the subspace
of invariant tensors of G in E»*. We have

45, €)= | (a5 00)={ (0140, 0. @9

But, since every O € G is orthogonal, Ot=0-1, and
since G is a group, it contains O-! if it contains O.
But A, is, by hypothesis, an invariant tensor of G
so that O-1(Ap)=O0%(Ap)=Ap. Thus (2-8) becomes

(Ap, €)= SG(AP, C) = (Ap, C) (29)

which proves the theorem. §

Let C be a tensor of even rank 2r. We say that
C is positive definite if

(e, Ce) = C'[li2. o vipdidge - od eiviz | irghl2 | irs (2-10)

I

for every tensor e=+0.

Theorem (2-2): The average of the transform of a positive
definite fensor over any group of transformations is
positive definite.

1 For finite groups, integration over the group reduces to
summation and is always possible. For infinite groups, the
theory is given by Weyl (1946).

§ It may be pointed out that nothing in the proof depends
in an essential way upon the finite dimension of E? so that
the result established here for finite dimensional spaces E»
can also be established for E7 replaced by a Hilbert space H.
Also, the real metric assumed here may be replaced by a
positive definite Hermitian form and the orthogonal group
replaced by the unitary group. Howocver, our applications do
not require these possible generalizations.
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The proof is trivial. We have

(e, O(C)e)=(0O'(e), COt(e)) . (2-11)

Hence
(e, Ce) = S (Ot(e), COH(e)) > 0
G

for every e+0 provided C is positive definite.
As a corollary of theorems (2-1) and (2-2) we have

Corollary (2-1): The nearest tensor of symmetry G to
a positive definite tensor is always positive definite.

3. The isotropic elastic tensor nearest to an
elastic tensor of arbitrary symmetry

In classical linear elasticity theory the elastic prop-
erties of a homogeneous material are completely
determined by the stress-strain relations which we
write in the form
11 = Citkley, (3-1)
where ti/=t/* are the components of the stress tensor
and e;;=e;; are the components of the tensor measure
of infinitesimal strain. Thus, within the linear theory,
the material properties are fixed in terms of the
elastic tensor C. Every elastic tensor satisfies the
relations
Cliikl = (Qitkl = (iitk = (klij (3-2)
and is positive definite in the sense of (2:10). We
adopt the view that any positive definite tensor C
of rank four satisfying the relations (3:2) defines a
possible elastic material.

A tensor invariant of the full orthogonal group is
called an isotropic tensor. To construct the nearest
isotropic tensor to a given elastic tensor C, we can,
by theorem (2-1), follow either of two procedures:

(1) average C over the orthogonal group, or (2) con-
struct an orthonormal basis of isotropic tensors of
rank four which span the subspace of isotropic
tensors having the symmetry (3-2). By theorem (2-2)
and corollary (2-1) we are assured that the isotropic
tensor nearest to any elastic tensor C will be positive
definite and, therefore, an elastic tensor also. The
construction of the nearest isotropic tensor according
to the second procedure is the easiest.

Two orthonormal isotropic tensors satisfying the
symmetry relations (3-2) can be constructed by taking
suitable linear combinations of the two isotropic
tensors

Ewimi=gisgrt 5

Eeyii=gugri+gagsm (3-3)

and it is known that every isotropic tensor of rank
four satisfying (3-2) is a linear combination of E(y
and E). One set of orthonormal isotropic tensors is
given by

919
A; = iE,,
1
Az = (%(314:2_21«:1). (3-4)

In the Voigt notation for a 6x6 elastic tensor,
the tensors A, J=1,2 have components given ex-
plicitly by

1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
A=3 9 0 0 0 0 o]
0 0 0 0 0 0
L0 0 0 0 0 0|
4 -2 -2 0 0 07
-2 4-2 0 0 0
A Ll-2-2 4 0 0 o
65| 0 0 0 3 0 0
0 0 0 0 3 0
| 0 0 0 0 0 3| (35)

Any other orthonormal set of isotropic tensors, By,
is expressible in terms of the A, by means of the
formula
B,=blA;, (3:6)
where summation from 1 to 2 over repeated capital
indices is implied, and b} is a 2 x 2 orthogonal matrix
having the form
cos 0

Ll —
“bJ” - [?sin@

with 0 a parameter.
An arbitrary elastic tensor C may now be expressed
as a sum of three components:

C=(C, A1)A;+(C, Az)Az+C* (3-8)

where the isotropic residue C* is the difference
between C and its nearest isotropic tensor which is
the sum of the first two terms on the right-hand side
of (3-8). We may note that the isotropic tensors
A, are not elastic tensors since each is only positive
semi-definite. Moreover, the isotropic residue C* is
always indefinite or semi-definite. The basis A, is
distinguished by the property that each element of
the basis is positive semi-definite. From the formulae
(3-6) and (3-7) it can be easily seen that the elements
B, of any other orthonormal basis for isotropic
tensors of this symmetry consist in one definite
(positive or negative definite) element and one in-
definite element.

Given an arbitrary elastic matrix in the Voigt
notation, the nearest isotropic elastic tensor is par-
ticularly easy to compute using the formulae (3-5)
and (3-8). .

For convenience in computing the inner product
(C, D) when C and D are given in the Voigt notation.
we give the following formula:

(C, D)=trace (§.C.Q.D)

sin 6] (37)

+cos 6

(39)
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where, on the right-hand side, C' and D are the 6x6
Voigt matrices, a dot denotes matrix multiplication,
and

(3:10)

QD

1
OO0 O -
SO0 Oo+O
SO OoO-=OO
SONOOO
QN OOOO
NMNOODOOO

4. The nearest cubic tensor

A cubic elastic tensor is an elastic tensor whose sym-
metry group is generated by the permutations of its
symmetry axes (€1, ez, es) and the reflections e; — —e;.
If the coordinate axes are chosen so as to coincide
with the symmetry axes of the material, the trans-
formations which leave Cijx invariant are the trans-
formations O which permute and reflect the axes of
the coordinate system in any fashion.

An arbitrary cubic elastic tensor is expressible in
the form

C=0mA1+ x2A2+ x3As, (4-1)

where Ay, J=1, 2, 3 is an orthonormal set composed
of the isotropic tensors A; and A: given in (3-5) and
a cubic tensor As. If the axes of the coordinate system
coincide with the axes of the given cubic tensor,
then Aj has components, in the Voigt notation,

-2 1.1 0 0 0

1-2 1 0 0 0

1|1 1-2 0 0 0
=551 0 0 0o 1 o o ®P

0 0 0 0 1 0

0 0 0 0 0 1

An arbitrary elastic tensor C can be written in
the form

3
C = 3 (As, C)A,+C*

J=1
= LC+C¥,

(4:3)

where C* is the cubic residue and .C is the cubic
tensor having the symmetry axes of Az which is
nearest to the given tensor C. By corollary (2-1),
C is positive definite.

Now the symmetry axes of As, which determine
the symmetry axes of (C, were chosen in a perfectly
arbitrary way. The resolution (4-3) minimizes the
length (C*, C*) of the residue for this particular
choice of the symmetry axes of the cubic part. How-
ever, in general, there exists another cubic tensor
with symmetry axes different from Aj; such that,
in a similar resolution of the same tensor C, the
residue has smaller length. To determine the direction
of the symmetry axes of the cubic tensor for which
the residue of a given tensor C has the smallest length
is a more difficult problem. The problem is only
partially resolved by the following considerations.
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Let T.As denote an orthogonal transformation of
the particular cubic tensor (4-2). The tensors A1, A,
and T.As form an orthonormal basis for cubic elastic
tensors having the symmetry axes of T.As. With
respect to this new basis, an arbitrary elastic tensor
C is decomposed as follows:

C=(C, A1)A1+ (C, A2)As+(C, T.As)T.Ag+ C*(T)
(44)

where the residue now depends on T as indicated.
The cubic elastic tensor nearest to C is now given by
the first three terms in (4-4) for that value of T which
minimizes |C*(T)|.

Suppose that the axes of Az coincide with the axes
of symmetry of the cubic elastic tensor nearest to C.
In this case, the quantity

G = (C, T.As) (4-5)
will have a stationary value at T=I, for arbitrary
infinitesimal rotations. Let Cij; be the components of
C in the coordinate system whose axes coincide with
the symmetry axes of its nearest cubic elastic tensor,
and let Ais; denote the corresponding components
of As given in the Voigt notation by (4-2). An infinite-
simal rotation T has Cartesian components given by

Tij=0u+ e, €ij=—¢ji . (4-6)

The first variation of the function G is then given by

0G = ewCim(Apirt+ Aspir+ Agipr+ Ajixp)
=2&ipCim1(Apsrr+ Ajien) (47)

which must vanish for arbitrary e;. Inserting the

values of the A as given by (4-2), we deduce:

Theorem (4-1): Given the components of an elastic tensor
C in a particular coordinate system, a necessary con-
dition that the azes of the coordinate system coincide
with the azes of the cubic elastic tensor nearest to C is
that the Voigt components of C satisfy the relations

Cie=C2, C2=0C3, C3z=0Cs. (4-8)
We should caution that the relations (4-8) are only
necessary, not sufficient, and we have not completely
solved the problem of determining the cubic tensor
nearest to a given elastic tensor except in the case
when the axes of symmetry of the cubic are prescribed.
However, the result established in theorem (4-1)
partially resolves the problem of finding, for example,
the cubic tensor nearest to a tetragonal polar elastic
tensor in the following sense. If a tetragonal polar
elastic tensor is referred to its natural coordinate
system, only the first relation in (4-8) can fail to be
satisfied. The last two relations are preserved under
any rotation about the third axis and a suitable
rotation about the third axis will yield a Cis and Csg
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satisfying (4-8);. The residue of C modulo its nearest
cubic with symmetry axes which coincide with the
new coordinate axes, will then be a local minimum.

5. Generalizations to other symmetry groups
of crystals

It is well known that there are thirty-two different
classes of crystals, which are among the most im-
portant anisotropic materials (Love, 1944). The sym-
metries of the various crystalline classes are described
by the groups of covering operations which correspond
to them. If we confine our attention only to the
elastic tensors associated with the various classes,
the thirty-two classes coalesce into nine groups.
The elastic tensors of these nine groups are invariant
under corresponding groups of orthogonal transforma-
tions. Table 1 contains an identification of these
groups, the corresponding number of independent
elastic constants and the name of a representative
crystalline class, after Miers (Love, 1944).

Table 1. Classification of crystals according to number
of elastic constants

Number of
elastic constants

Name of representative

Group class (after Miers)

Asymmetric 21
Equatorial 13
Digonal holoaxial
Trigonal polar
Trigonal holoaxial
Hexagonal polar
Tetragonal polar
Tetragonal holoaxial
Tesseral polar (cubic)

OISO W~
WDHTJO® 0

By considering the invariant transformations of the
nine groups, we see that they are subgroups of one
another and of the isotropic group, as shown in Fig.1,
where the arrows show transitions from a group to
a subgroup. The numbers in Fig. 1 correspond to the
group number of Table 1.

The discussion in the preceding sections is ap-
plicable for finding the elastic tensor of some desired
symmetry nearest to a given elastic tensor. If the
symmetry group of the desired tensor is a subgroup
of the symmetry group of the given tensor, then the
nearest elastic tensor to the given tensor is the tensor
itself. For example, the nearest asymmetric (triclinic)
tensor to any elastic tensor is the tensor itself. How-
ever, a residue is obtained if, in Fig. 1, the group of
the desired symmetry cannot be reached from the
group of the given tensor by a sequence of arrows.
As an example we give below the construction of a
hexagonal polar tensor nearest to a tesseral polar
(cubic) tensor. It may be mentioned that this con-
struction may have certain practical applications in
vibration problems in which factorization of the

AC16— 60

921

Isotropic group

1

Fig. 1. Relation of the nine groups of Table 1 to each other
and to the isotropic group.

frequency equation is possible in the case of hexagonal
symmetry, but not in the case of cubic symmetry
(Hearmon, 1961).

An orthonormal set of tensors for the hexagonal
polar group is a set Ay, J=1 to 5, where 4; and 4.
are the isotropic tensors given in (3-5) and

-2 -2 1 0 0 O
-2-2 1 0 0 0

., 1 1 4 0 0 O
As=%| o 0 0 0 0 0]|°
0 0 0 0 0 0

| o o 0 0 0 O]

—8 4 4 0 0 07

4 -8 4 0 0 O

A4=1 4 4-8 0 0 O
6y30| 0 0 0 9 0 0|’

0O 0 0 0 9 0

| 0 0 0 0 0 —6 |

T 1 -5 4 0 0 07

-5 1 4 0 0 0
A5=i 4 4 -8 0 0 O
66| 0 0 0 0 0 O

0 0 0 0 0 0

0 0 0 0 0 3|

(5-1)

The nearest hexagonal polar tensor to a given cubic
elastic tensor, constructed following the method of
Section 2, is given by
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$Beii+ciz+2c44) e +3c12—2¢as) 2 0 0 0
t(cu1+3c12—2¢as) }3cii+ci2+2¢a4) ¢z 0 0 0
C’ _ Ci2 C12 Ci1 0 0 0 (5.2)
A 0 0 0 Ca4 0 0 ’
0 0 0 0 C44 0
0 O 0 0 0 12’(611 —_ 612)

where c11, €12, and cqs are the elastic constants of the
cubic tensor.
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Stereochemistry of Arsenic. IX. Diiodomethylarsine*

By NorMAN CAMERMAN AND JAMES TROTTER
Department of Chemistry, University of British Columbia, Vancouver 8, B.C., Canada

(Received 26 November 1962)

Crystals of diiodomethylarsine, CH3AsI,, are monoclinic with eight molecules in a unit cell of
dimensions a=14-45, b=4-60, c=19-97 A, 8=114°20", space group C2/c. The structure has been
determined from partial three-dimensional data in normal and generalized projections along b,
and values of the bond distances, valency angles, and intermolecular separations have been obtained.

As part of a series of investigations of compounds
containing arsenic, the crystal and molecular structure
of dijodomethylarsine has been determined; it is one
of the few simple arsenic derivatives which are solid
at room temperature.

Experimental

Crystals of diiodomethylarsine, which are yellow-
orange, are volatile and melt at about room temper-
ature. For recording the X-ray data, crystals were
sealed in capillaries and cooled by a stream of nitrogen
which was first passed through a coil immersed in
an ice-bath. The unit-cell dimensions and space group
were determined from various rotation, oscillation,
Weissenberg (Cu K«) and precession (Mo K«x) films.

Crystal data (at 5-10 °C; A(Cu Ku) = 1-5418 A,

A(Mo Kx) = 07107 A).

Diiodomethylarsine, CHsAsIz; M, 343-85; m.p.
26 °C.

Monoclinic,
a=1445, b=4-60, c=19-97 A, f=114°20",

U=1209-5 As,

Dy (with Z=8)=3-8 g.cm~3,

Absorption coefficient, x(Cu Kx)=939 ecm-1.

F(000)=1184.

* Part VIII: Camerman & Trotter (1963).

Absent reflexions: hkl when (h+k) is odd, A0l when
l1is odd.

Space group is Cc or C2/c. Analysis has proceeded
satisfactorily in C2/c.

No suitable flotation medium was available for
measuring the density; the density of the liquid,
measured at room temperature by means of a density
bottle, was 3:1 g.cm-3, and, since it seemed likely
that the solid at slightly reduced temperatures would
have a higher density, Z=8 was assumed. This was
confirmed by the structure analysis.

Intensity data for the A0l and A1l reflexions were
recorded on Weissenberg films and estimated visually,
and the structure amplitudes were derived as usual,
the absolute scale being established later by correla-
tion with the calculated structure factors, The crystal

used was a needle, elongated along b, with a rectangular
cross-section 0-4x0-13 mm, the (001) face being
developed. The films were textbook examples (Buer-
ger, 1960) of severe absorption effects, and corrections
were applied (Howells, 1950). These absorption cor-
rection factors applied to the intensities varied from
1 to about 150, and since they are approximate, the
accuracy of the measured structure amplitudes is
probably rather limited. 140 independent A0l re-
flexions (77% of the possible) and 213 Allreflexions
(629%) were observed.



